AI Learning Roadmap

by Divyanshu
Phase 1: AI/ML Foundation
AI/ML Basics
1.Neural Networks
2.Supervised vs Unsupervised Learning
3.Embeddings
4.Transformers
5.NLP Techniques
6.Text Embeddings
Generative AI
1.Text Generations (GPT, LLAMA, etc)
2.Image Generation (Stable Diffusion, etc)
3.Video Generations (Sora, etc)
4.Attention Mechanism
5.Fine Tuning
6.Advanced Prompting Techniques
7.AI APIs (OpenAI, Anthropic, etc)
Phase 2: AI Tools & Development
AI Assisted Coding
1.Cursor
2.Windsurf
3.Cline
4.Agentic Workflows
5.Prompt Engineering Practice
Frontend Dev Tools
1.v0
2.Replit
3.Lovable
4.Bolt New
5.Devin
Model Testing & Deployment
1.Hugging Face Transformers
2.Hugging Face Diffusers
3.Fine-tuned Model Deployment
Phase 3: Data & Infrastructure
Vector Databases
1.Pinecone
2.Chroma
3.Storing Embeddings
4.Semantic Search Practice
AI Agent Development
1.LLM Data Structures
2.LlamaIndex
3.Langchain
4.CrewAI
Phase 4: Advanced Implementation
Optimization
1.RAG & LoRA
2.Chain of Thoughts Prompting
3.Domain-specific Fine Tuning
4.Prompt Caching (Claude)
Deployment & Monitoring
1.Docker Deployment
2.Langsmith Monitoring